	 [image:]
	Project Branching

	
	 [image:]
	Project Branching

[image:]

TopTeam User Guide
Project Branching
Version 1.0

[bookmark: _Toc454368893]User Guide Information
	Record Type
	Project Branching

	User Level
	Business Analyst

	Status
	Draft

[bookmark: _Toc454368894]Document Revision History
	Version
	Date
	Description
	Author

	1.0
	06/22/2016
	New
	Joy Buller

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents
User Guide Information	2
Document Revision History	2
Summary	4
Assumptions, Dependencies & Constraints	4
Assumptions	4
Dependencies	4
Constraints	4
Scenario	5
Creating an ERD	5
Traceability	7
Including an ERD From Another Project	8
Supporting Documentation	10

[bookmark: _Toc393198187][bookmark: _Toc454368895][bookmark: _Toc459815932][bookmark: _GoBack]Project Creation under another Project – Branching
Project Branching-A Branch can be considered to be a clone of part of your main project that is developed and modified in parallel to the main project. When branching, you can branch the complete project or branch only those objects that will be used in the new project. This is called sparse branching. Over a period of time, the branch may continue to be modified and developed parallel as an independent project or it may be merged back into the source project after the parallel activity is complete.
Branching is very useful for managing parallel development or for managing product lines, as well as managing multiple branches for different clients of a base product.
With Project Branching, you can:
· Branch a project (complete or sparse), modify it and later on, merge changes with the main project
· Create a branch of a project using an existing baseline in the main project. Include only selected record types in the branched project as per your needs
· Compare project branches and view the differences between them
· Merge changes from the parent project into the branch at any time (Rebasing)
· Merge changes from a branch to the parent project
· View Branch History from and to a project at one glance
· View a visual representation of projects and its branches using the branch diagram
[bookmark: _Toc459815933]Scenarios for Branching and Merging
The following are examples of scenarios where you might need to create branches and perform merges:
· If you are having regular problems with broken builds, you should create a development branch to isolate parallel development efforts.
· If you have features that are causing stability issues, or teams causing stability issues among each other, create separate feature or team branches beneath a development container folder in source control.
Do not branch unless it becomes necessary for your development team. Branching introduces additional source tree maintenance and merging tasks. Most development teams such as those building line of business applications, working on short release cycles do not need to branch. Development teams working on longer release cycles such as Independent Software Vendors (ISVs) building packaged applications are more likely to need branching as part of the development process.
If you have one stream of development, or are performing incremental and continuous releases, you might not need to create branches unless you frequently experience breaking changes that are destabilizing your development efforts.
[bookmark: _Toc459815934]Common Scenarios in Practice
The following are the most common branching scenarios:
· Scenario 1 – No Branches. Your team works only from the main source tree. In this case, you do not create branches and you do not need isolation. This scenario is generally for small or medium size teams that do not require isolation for teams or for features, and do not need the isolation for releases.
· Scenario 2 – Branch for Release. Your team creates branches to support an ongoing release. This is the next most common case where you need to create a branch to stabilize for a release. In this case, your team creates a branch before release time to stabilize the release and then merges changes from the release branch back into the main source tree after the software is released.
· Scenario 3 – Branch for Maintenance. Your team creates a branch to maintain an old build. In this case, you create a branch for your maintenance efforts, so that you do not destabilize your current production builds. You may or may not merge changes from the maintenance branch back into the main tree. For example, you might work on a quick fix for a subset of customers that you do not want to include in the main build.
· Scenario 4 – Branch for Feature. Your team creates branches based on features. In this case, you create a development branch, perform work in the development branch, and then merge back into your main source tree. You can create separate branches for work on specific features to be completed in parallel.
· Scenario 5 – Branch for Team. You branch to isolate sub-teams so they can work without being subject to breaking changes, or can work in parallel towards unique milestones.
You may encounter one or more of these scenarios. Use these scenarios as a reference point to see what guidance may or may not apply to you.
[bookmark: _Toc459815935]Scenario 1 – No Branches
This scenario generally applies to smaller teams for whom isolated development is not a concern. By labeling builds, you are able to retrieve the source corresponding to a particular build. There is no need to introduce branching complexity because you can work directly from Main folder. The following is a view depicting the no-branch scenario:
My Program
└ Main Application
 └ Application Specific Project Name
[bookmark: _Toc459815936]Scenario 2 – Branch for Release
In this scenario your team creates a branch to stabilize the release and then merges the release branch back into the main source tree after the software is released. The following is a view showing branching for releases:
My Program
└ Main Application → Main integration branch
│ └ Application Specific Project Name
└ Releases
 └ Release 1 → Release branch
 └ Application Specific Project Name
[bookmark: _Toc459815937]Scenario 3 – Branch for Maintenance
In this scenario, you create a branch for your maintenance efforts, so that you do not destabilize your current production builds. The following is a view showing maintenance branches. This is very similar to branch for release, however at this point the branch is maintained over time in order to support the release:
My Program
└ Main Application→ Main integration branch
│ └ Source
└ Releases → Maintenance branch container
 └ Release 1 → Maintenance branch
 │ └ Source
 │ └ Other Asset Folders
 └ Release 2 → Maintenance branch
 └ Source
 └ Other Asset Folders
[bookmark: _Toc459815938]Scenario 4 – Branch for Feature
In this scenario, you create a development branch, perform work in that branch, and then merge your work back into your main source tree. You organize your development branches based on product features. The following is a physical view showing branching for feature development:
My Program
└ Main Application Development → Isolated development branch container
│ └ Feature A → Feature branch
│ │ └ Source
│ └ Feature B → Feature branch
│ │ └ Source
│ └ Feature C → Feature branch
│ └ Source
│
└ Main → Main Integration branch
 └ Source
[bookmark: _Toc459815939]Scenario 5 – Branch for Team
This scenario is similar to the preceding branch-by-feature scenario, except that you organize your development branches according to sub-team rather than product feature. There might be a one-to-one correspondence between team and feature, but in some cases a team might work on multiple features. The following is a physical view showing branching for sub-team development:
My Program
└ Main Application Development → PM and BA Isolated development branch container
│ └ Team 1 → Development Team A
│ │ └ Feature A → Isolated branch for development
│ │ │ └ Source
│ │ └ Feature B → Isolated branch for development
│ │ └ Source
│ │
│ └ Team 2 → Development Team B
│ └ Feature A → Isolated branch for development
│ │ └ Source
│ └ Feature B → Isolated branch for development
│ └ Source
│
└ Main → Main Integration branch
 └ Source

[image:]If you are working on an effort for a solution with a primary project folder with current state, do the following.
1. Select the Root level project for the solution to be changed.

2. Choose “New Project Branch using Wizard”

3. On the Wizard welcome screen, choose “Next”.

4. [image:]Choose to create a branch for a single project and click “Next”.

5. Select the Solution’s root project record and click “Next”.
[image:]

6. [image:]Leave the default of creating from the current project and click “Next”.
1. If you do not want the project branched from the current state, but from a different baseline, you will select “From Baseline”. This should not be the case from the current state project. If the changes to be made are based on subsequent efforts from an iterative development, the branch should be made from the project folder after which this current effort would be produced.
7. Choose to create the branch as a sub project and select the solution for which you are creating a desired state for.
[image:]

8. Click “Next”.

9. [image:]It is usually best to include all record types during creation of the project as attempting to add record types to a project at a later time may result in challenges. If you are concerned with unneeded record types causing confusion you can always hide them after project creation. It is suggested to move forward accepting the default of all records and click “Next”.

10. [image:]Choose “Selected Records” to limit the Stakeholders and Actors to only those affected by your solution. This may seem tedious for this initial Solution Current State project creation, but subsequent Desired State project creation efforts will be easier. Click “Next”.

11. Select records affected by the desired state modifications you are looking to implement. You can always merge additional records later should they be needed so do not be too concerned with adding every record that might ever be affected by the desired state.
[image:]
12. You will be asked if you would like to include linked records. This option can assist you with ensuring the most likely affected areas of the solution will be included in your branch. It will also assist with the reporting process for helping express the big picture of the future state.

13. Select the appropriate issue filter. For specific solution initiatives, it is usually best to choose the filter of “open issues”. This will give you a head start on understanding any outstanding issues so you can ensure known issues are less likely to interfere with your change initiative.

14. [image:]You will then be asked if you would like to share records. Select Yes. The solution will then ask you “HOW” you would like to share.

1. Option one will maintain its connection to the immediate solution from which the branch was created. If appropriate sharing was performed on that level, this is an appropriate selection.
2. Option two should be used if you have branched and shared records that are primarily from the “Global” record (Stakeholders and i.e.).

15. Change the name of the project to reflect the effort for which you are documenting Desired State. This can be changed whenever needed. This matching the project name recorded in the project management tool is often helpful.
1. [image:]If the desired state results in a New Solution to be implemented, you will leave the name as the current solution, create a sub project for the desired state, and eventually, your overall root project for the current state can be renamed to reflect the new solution’s name.

16. The next screen should ask you to “Create Branch”, choose to do so and wait for the system to complete the branch creation.

17. Choose “OK”.

18. The system will refresh the cache and place the new project as a branch / child of the solution record.

19. [image:]The system will create Baselines in order to track changes you make to the new project.

20. The system will ask if you want to Share records. It is very important to say “Yes”.

21. On the Sharing welcome screen, select “Next”.
[image:]
22. If you are choosing to share records like Actors or Stakeholders, choose to share the entire record type, which will make maintaining the records easier. However, if you are sharing records such as activities, and you want some of those activities constrained for modification, you will select “Share individual records” so you may select the specific records you wish to constrain.

23. Select “Next”.

24. Expand the project so the record types are displayed. Check the box next to the Record Types you wish to constrain

25. Select “Next”.

26. For branches of solution projects, you have two choices:
1. Automatic Updates - This will simplify your updating process when the company modifies how we refer to a specific stakeholder or Actor or other record appropriate for maintaining in a centralized fashion to provide consistency across all solution endeavors.
2. Manual Updates – This would be used if you need to review changes that have occurred in the core to determine if it is appropriate to reflect that change in your effort.
27. Click “Next”.

28. Finalize the process by selecting “Share”.

29. Select “Finish”.

30. On the final screen, uncheck “Launch Log file on Finish” and click “Finish”.
[bookmark: _Project_Creation_for_1]

Confidential	11.21.2016	Page 5 of 11

Confidential	11.21.2016	Page 11 of 11

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image1.png

image2.png

image14.png

